一、PCB沉金采用的是化學沉積的方法,通過化學氧化還原反應的方法生成一層鍍層,一般厚度較厚,是化學鎳金金層沉積方法的一種,可以達到較厚的金層。二、PCB鍍金采用的是電解的原理,也叫電鍍方式。其他金屬表面處理也多數(shù)采用的是電鍍方式。在實際產(chǎn)品應用中,90%的金板是沉金板,因為鍍金板焊接性差是他的致命缺點,也是導致很多公司放棄鍍金工藝的直接原因!沉金工藝在印制線路表面上沉積顏色穩(wěn)定,光亮度好,鍍層平整,可焊性良好的鎳金鍍層?;究煞譃樗膫€階段:前處理(除油,微蝕,活化、后浸),沉鎳,沉金,后處理(廢金水洗,DI水洗,烘干)。沉金厚度在0.025-0.1um間。金應用于電路板表面處理,因為金的導電性強,抗氧化性好,壽命長,而鍍金板與沉金板最根本的區(qū)別在于,鍍金是硬金(耐磨),沉金是軟金(不耐磨)。1、沉金與鍍金所形成的晶體結構不一樣,沉金對于金的厚度比鍍金要厚很多,沉金會呈金黃色,較鍍金來說更黃(這是區(qū)分鍍金和沉金的方法之一),鍍金的會稍微發(fā)白(鎳的顏色)。2、沉金與鍍金所形成的晶體結構不一樣,沉金相對鍍金來說更容易焊接,不會造成焊接不良。沉金板的應力更易控制,對有邦定的產(chǎn)品而言,更有利于邦定的加工。同時也正因為沉金比鍍金軟,所以沉金板做金手指不耐磨(沉金板的缺點)。3、PCB沉金板只有焊盤上有鎳金,趨膚效應中信號的傳輸是在銅層不會對信號有影響。4、沉金較鍍金來說晶體結構更致密,不易產(chǎn)成氧化。5、隨著電路板加工精度要求越來越高,線寬、間距已經(jīng)到了0.1mm以下。鍍金則容易產(chǎn)生金絲短路。沉金板只有焊盤上有鎳金,所以不容易產(chǎn)成金絲短路。
隨著PCB設計復雜度的逐步提高,對于信號完整性的分析除了反射,串擾以及EMI之外,穩(wěn)定可靠的電源供應也成為設計者們重點研究的方向之一。尤其當開關器件數(shù)目不斷增加,核心電壓不斷減小的時候,電源的波動往往會給系統(tǒng)帶來致命的影響,于是人們提出了新的名詞:電源完整性,簡稱PI(powerintegrity)。當今國際市場上,IC設計比較發(fā)達,但電源完整性設計還是一個薄弱的環(huán)節(jié)。因此本文提出了PCB板中電源完整性問題的產(chǎn)生,分析了影響電源完整性的因素并提出了解決PCB板中電源完整性問題的優(yōu)化方法與經(jīng)驗設計,具有較強的理論分析與實際工程應用價值。二、電源噪聲的起因及分析對于電源噪聲的起因我們通過一個與非門電路圖進行分析。圖1中的電路圖為一個三輸入與非門的結構圖,因為與非門屬于數(shù)字器件,它是通過“1”和“0”電平的切換來工作的。隨著IC技術的不斷提高,數(shù)字器件的切換速度也越來越快,這就引進了更多的高頻分量,同時回路中的電感在高頻下就很容易引起電源波動。如在圖1中,當與非門輸入全為高電平時,電路中的三極管導通,電路瞬間短路,電源向電容充電,同時流入地線。此時由于電源線和地線上存在寄生電感,我們由公式V=LdI/dt可知,這將在電源線和地線上產(chǎn)生電壓波動,如圖2中所示的電平上升沿所引入的ΔI噪聲。當與非門輸入為低電平時,此時電容放電,將在地線上產(chǎn)生較大的ΔI噪聲;而電源此時只有電路的瞬間短路所引起的電流突變,由于不存在向電容充電而使電流突變相對于上升沿來說要小。從對與非門的電路進行分析我們知道,造成電源不穩(wěn)定的根源主要在于兩個方面:一是器件高速開關狀態(tài)下,瞬態(tài)的交變電流過大;
從IC芯片的發(fā)展及封裝形式來看,芯片體積越來越小、引腳數(shù)越來越多;同時,由于近年來IC工藝的發(fā)展,使得其速度也越來越高。這就帶來了一個問題,即電子設計的體積減小導致電路的布局布線密度變大,而同時信號的頻率還在提高,從而使得如何處理高速信號問題成為一個設計能否成功的關鍵因素。隨著電子系統(tǒng)中邏輯復雜度和時鐘頻率的迅速提高,信號邊沿不斷變陡,印刷電路板的線跡互連和板層特性對系統(tǒng)電氣性能的影響也越發(fā)重要。對于低頻設計,線跡互連和板層的影響可以不考慮,但當頻率超過50 MHz時,互連關系必須考慮,而在*定系統(tǒng)性能時還必須考慮印刷電路板板材的電參數(shù)。因此,高速系統(tǒng)的設計必須面對互連延遲引起的時序問題以及串擾、傳輸線效應等信號完整性(Signal Integrity,SI)問題。當硬件工作頻率增高后,每一根布線網(wǎng)絡上的傳輸線都可能成為發(fā)射天線,對其他電子設備產(chǎn)生電磁輻射或與其他設備相互干擾,從而使硬件時序邏輯產(chǎn)生混亂。電磁兼容性(Electromagnetic Compatibility,EMC)的標準提出了解決硬件實際布線網(wǎng)絡可能產(chǎn)生的電磁輻射干擾以及本身抵抗外部電磁干擾的基本要求。1 高速數(shù)字電路設計的幾個基本概念在高速數(shù)字電路中,由于串擾、反射、過沖、振蕩、地彈、偏移等信號完整性問題,本來在低速電路中無需考慮的因素在這里就顯得格外重要;另外,隨著現(xiàn)有電氣系統(tǒng)耦合結構越來越復雜,電磁兼容性也變成了一個不能不考慮的問題。要解決高速電路設計的問題,首先需要真正明白高速信號的概念。高速不是就頻率的高低來說的,而是由信號的邊沿速度決定的,一般認為上升時間小于4倍信號傳輸延遲時可視為高速信號。即使在工作頻率不高的系統(tǒng)中,也會出現(xiàn)信號完整性的問題。這是由于隨著集成電路工藝的提高,所用器件I/O端口的信號邊沿比以前更陡更快,因此在工作時鐘不高的情況下也屬于高速器件,隨之帶來了信號完整性的種種問題。
1.開料目的:根據(jù)工程資料MI的要求,在符合要求的大張板材上,裁切成小塊生產(chǎn)板件.符合客戶要求的小塊板料.流程:大板料→按MI要求切板→鋦板→啤圓角磨邊→出板鉆孔目的:根據(jù)工程資料,在所開符合要求尺寸的板料上,相應的位置鉆出所求的孔徑.流程:疊板銷釘→上板→鉆孔→下板→檢查修理沉銅目的:沉銅是利用化學方法在絕緣孔壁上沉積上一層薄銅.流程:粗磨→掛板→沉銅自動線→下板→浸%稀H2SO4→加厚銅圖形轉移目的:圖形轉移是生產(chǎn)菲林上的圖像轉移到板上。流程:(藍油流程):磨板→印第Y面→烘干→印第二面→烘干→爆光→沖影→檢查;(干膜流程):麻板→壓膜→靜置→對位→曝光→靜置→沖影→檢查圖形電鍍目的:圖形電鍍是在線路圖形裸露的銅皮上或孔壁上電鍍一層達到要求厚度的銅層與要求厚度的金鎳或錫層。流程:上板→除油→水洗二次→微蝕→水洗→酸洗→鍍銅→水洗→浸酸→鍍錫→水洗→下板退膜目的:用NaOH溶液退去抗電鍍覆蓋膜層使非線路銅層裸露出來。流程:水膜:插架→浸堿→沖洗→擦洗→過機;干膜:放板→過機蝕刻目的:蝕刻是利用化學反應法將非線路部位的銅層腐蝕去。綠油目的:綠油是將綠油菲林的圖形轉移到板上,起到保護線路和阻止焊接零件時線路上錫的作用。流程:磨板→印感光綠油→鋦板→曝光→沖影;磨板→印第Y面→烘板→印第二面→烘板字符目的:字符是提供的一種便于辯認的標記。流程:綠油終鋦后→冷卻靜置→調網(wǎng)→印字符→后鋦鍍金手指目的:在插頭手指上鍍上一層要求厚度的鎳金層,使之更具有硬度的耐磨性。流程:上板→除油→水洗兩次→微蝕→水洗兩次→酸洗→鍍銅→水洗→鍍鎳→水洗→鍍金鍍錫板 (并列的一種工藝)目的:噴錫是在未覆蓋阻焊油的裸露銅面上噴上一層鉛錫,以保護銅面不蝕氧化,以保證具有良好的焊接性能.流程:微蝕→風干→預熱→松香涂覆→焊錫涂覆→熱風平整→風冷→洗滌風干成型目的:通過模具沖壓或數(shù)控鑼機鑼出客戶所需要的形狀成型的方法有機鑼,啤板,手鑼,手切說明:數(shù)據(jù)鑼機板與啤板的精確度較高,手鑼其次,手切板最低具只能做一些簡單的外形.測試目的:通過電子00%測試,檢測目視不易發(fā)現(xiàn)到的開路,短路等影響功能性之缺陷.流程:上?!虐濉鷾y試→合格→FQC目檢→不合格→修理→返測試→OK→REJ→報廢終檢目的:通過00%目檢板件外觀缺陷,并對輕微缺陷進行修理,避免有問題及缺陷板件流出.具體工作流程:來料→查看資料→目檢→合格→FQA抽查→合格→包裝→不合格→處理→檢查OKa
廠家貼片SMTVia hole導通孔起線路互相連結導通的作用,電子行業(yè)的發(fā)展,同時也促進PCB的發(fā)展,也對印制板制作工藝和表面貼裝技術提出更高要求。貼片SMT生產(chǎn)商Via hole塞孔工藝應運而生,同時應滿足下列要求:(一)導通孔內有銅即可,阻焊可塞可不塞;(二)導通孔內必須有錫鉛,有一定的厚度要求(4微米),不得有阻焊油墨入孔,造成孔內藏錫珠;(三)導通孔必須有阻焊油墨塞孔,不透光,不得有錫圈,錫珠以及平整等要求。隨著電子產(chǎn)品向“輕、薄、短、小”方向發(fā)展,PCB也向高密度、高難度發(fā)展,因此出現(xiàn)大量SMT、BGA的PCB,而客戶在貼裝元器件時要求塞孔,主要有五個作用:(一)防止PCB過波峰焊時錫從導通孔貫穿元件面造成短路;特別是我們把過孔放在BGA焊盤上時,就必須先做塞孔,再鍍金處理,便于BGA的焊接。(二)避免助焊劑殘留在導通孔內;(三)電子廠表面貼裝以及元件裝配完成后PCB在測試機上要吸真空形成負壓才完成:(四)防止表面錫膏流入孔內造成虛焊,影響貼裝;
如果阻抗變化只發(fā)生一次,例如線寬從8mil變到6mil后,一直保持6mil寬度這種情況,要達到突變處信號反射噪聲不超過電壓擺幅的5%這一噪聲預算要求,阻抗變化必須小于10%。這有時很難做到,以 FR4板材上微帶線的情況為例,我們計算一下。如果線寬8mil,線條和參考平面之間的厚度為4mil,特性阻抗為46.5歐姆。線寬變化到6mil后特性阻抗變成54.2歐姆,阻抗變化率達到了20%。反射信號的幅度必然超標。至于對信號造成多大影響,還和信號上升時間和驅動端到反射點處信號的時延有關。但至少這是一個潛在的問題點。幸運的是這時可以通過阻抗匹配端接解決問題。如果阻抗變化發(fā)生兩次,例如線寬從8mil變到6mil后,拉出2cm后又變回8mil。那么在2cm長6mil寬線條的兩個端點處都會發(fā)生反射,一次是阻抗變大,發(fā)生正反射,接著阻抗變小,發(fā)生負反射。如果兩次反射間隔時間足夠短,兩次反射就有可能相互抵消,從而減小影響。假設傳輸信號為1V,第Y次正反射有0.2V被反射,1.2V繼續(xù)向前傳輸,第二次反射有 -0.2*1.2 = 0.24v被反射回。再假設6mil線長度極短,兩次反射幾乎同時發(fā)生,那么總的反射電壓只有0.04V,小于5%這一噪聲預算要求。因此,這種反射是否影響信號,有多大影響,和阻抗變化處的時延以及信號上升時間有關。研究及實驗表明,只要阻抗變化處的時延小于信號上升時間的20%,反射信號就不會造成問題。如果信號上升時間為1ns,那么阻抗變化處的時延小于0.2ns對應1.2英寸,反射就不會產(chǎn)生問題。也就是說,對于本例情況,6mil寬走線的長度只要小于3cm就不會有問題。