Via hole導(dǎo)通孔起線路互相連結(jié)導(dǎo)通的作用,電子行業(yè)的發(fā)展,同時也促進PCB的發(fā)展,也對印制板制作工藝和表面貼裝技術(shù)提出更高要求。Via hole塞孔工藝應(yīng)運而生,同時應(yīng)滿足下列要求:(一)導(dǎo)通孔內(nèi)有銅即可,阻焊可塞可不塞;(二)導(dǎo)通孔內(nèi)必須有錫鉛,有一定的厚度要求(4微米),不得有阻焊油墨入孔,造成孔內(nèi)藏錫珠;(三)導(dǎo)通孔必須有阻焊油墨塞孔,不透光,不得有錫圈,錫珠以及平整等要求。隨著電子產(chǎn)品向“輕、薄、短、小”方向發(fā)展,PCB也向高密度、高難度發(fā)展,因此出現(xiàn)大量SMT、BGA的PCB,而客戶在貼裝元器件時要求塞孔,主要有五個作用:(一)防止PCB過波峰焊時錫從導(dǎo)通孔貫穿元件面造成短路;特別是我們把過孔放在BGA焊盤上時,就必須先做塞孔,再鍍金處理,便于BGA的焊接。(二)避免助焊劑殘留在導(dǎo)通孔內(nèi);(三)電子廠表面貼裝以及元件裝配完成后PCB在測試機上要吸真空形成負壓才完成:(四)防止表面錫膏流入孔內(nèi)造成虛焊,影響貼裝;
如果阻抗變化只發(fā)生一次,例如線寬從8mil變到6mil后,一直保持6mil寬度這種情況,要達到突變處信號反射噪聲不超過電壓擺幅的5%這一噪聲預(yù)算要求,阻抗變化必須小于10%。這有時很難做到,以 FR4板材上微帶線的情況為例,我們計算一下。如果線寬8mil,線條和參考平面之間的厚度為4mil,特性阻抗為46.5歐姆。線寬變化到6mil后特性阻抗變成54.2歐姆,阻抗變化率達到了20%。反射信號的幅度必然超標(biāo)。至于對信號造成多大影響,還和信號上升時間和驅(qū)動端到反射點處信號的時延有關(guān)。但至少這是一個潛在的問題點。幸運的是這時可以通過阻抗匹配端接解決問題。如果阻抗變化發(fā)生兩次,例如線寬從8mil變到6mil后,拉出2cm后又變回8mil。那么在2cm長6mil寬線條的兩個端點處都會發(fā)生反射,一次是阻抗變大,發(fā)生正反射,接著阻抗變小,發(fā)生負反射。如果兩次反射間隔時間足夠短,兩次反射就有可能相互抵消,從而減小影響。假設(shè)傳輸信號為1V,第Y次正反射有0.2V被反射,1.2V繼續(xù)向前傳輸,第二次反射有 -0.2*1.2 = 0.24v被反射回。再假設(shè)6mil線長度極短,兩次反射幾乎同時發(fā)生,那么總的反射電壓只有0.04V,小于5%這一噪聲預(yù)算要求。因此,這種反射是否影響信號,有多大影響,和阻抗變化處的時延以及信號上升時間有關(guān)。研究及實驗表明,只要阻抗變化處的時延小于信號上升時間的20%,反射信號就不會造成問題。如果信號上升時間為1ns,那么阻抗變化處的時延小于0.2ns對應(yīng)1.2英寸,反射就不會產(chǎn)生問題。也就是說,對于本例情況,6mil寬走線的長度只要小于3cm就不會有問題。
在高速設(shè)計中,可控阻抗板和線路的特性阻抗問題困擾著許多中國工程師。本文通過簡單而且直觀的方法介紹了特性阻抗的基本性質(zhì)、計算和測量方法。在高速設(shè)計中,可控阻抗板和線路的特性阻抗是最重要和最普遍的問題之一。首先了解一下傳輸線的定義:傳輸線由兩個具有一定長度的導(dǎo)體組成,一個導(dǎo)體用來發(fā)送信號,另一個用來接收信號(切記“回路”取代“地”的概念)。在一個多層板中,每一條線路都是傳輸線的組成部分,鄰近的參考平面可作為第二條線路或回路。一條線路成為“性能良好”傳輸線的關(guān)鍵是使它的特性阻抗在整個線路中保持恒定。線路板成為“可控阻抗板”的關(guān)鍵是使所有線路的特性阻抗?jié)M足一個規(guī)定值,通常在25歐姆和70歐姆之間。在多層線路板中,傳輸線性能良好的關(guān)鍵是使它的特性阻抗在整條線路中保持恒定。但是,究竟什么是特性阻抗?理解特性阻抗最簡單的方法是看信號在傳輸中碰到了什么。當(dāng)沿著一條具有同樣橫截面?zhèn)鬏斁€移動時,這類似圖1所示的微波傳輸。假定把1伏特的電壓階梯波加到這條傳輸線中,如把1伏特的電池連接到傳輸線的前端(它位于發(fā)送線路和回路之間),一旦連接,這個電壓波信號沿著該線以光速傳播,它的速度通常約為6英寸/納秒。當(dāng)然,這個信號確實是發(fā)送線路和回路之間的電壓差,它可以從發(fā)送線路的任何一點和回路的相臨點來衡量。圖2是該電壓信號的傳輸示意圖。Zen的方法是先“產(chǎn)生信號”,然后沿著這條傳輸線以6英寸/納秒的速度傳播。第Y個0.01納秒前進了0.06英寸,這時發(fā)送線路有多余的正電荷,而回路有多余的負電荷,正是這兩種電荷差維持著這兩個導(dǎo)體之間的1伏電壓差,而這兩個導(dǎo)體又組成了一個電容器。在下一個0.01納秒中,又要將一段0.06英寸傳輸線的電壓從0調(diào)整到1伏特,這必須加一些正電荷到發(fā)送線路,而加一些負電荷到接收線路。每移動0.06英寸,必須把更多的正電荷加到發(fā)送線路,而把更多的負電荷加到回路。每隔0.01納秒,必須對傳輸線路的另外一段進行充電,然后信號開始沿著這一段傳播。電荷來自傳輸線前端的電池,當(dāng)沿著這條線移動時,就給傳輸線的連續(xù)部分充電,因而在發(fā)送線路和回路之間形成了1伏特的電壓差。每前進0.01納秒,就從電池中獲得一些電荷(±Q),恒定的時間間隔(±t)內(nèi)從電池中流出的恒定電量(±Q)就是一種恒定電流。流入回路的負電流實際上與流出的正電流相等,而且正好在信號波的前端,交流電流通過上、下線路組成的電容,結(jié)束整個循環(huán)過程。
安徽專業(yè)FPC柔性版PCB設(shè)計是一個細致的工作,需要的就是細心和耐心。剛開始做設(shè)計的新手經(jīng)常犯的錯誤就是一些細節(jié)錯誤。FPC柔性版器件管腳弄錯了,器件封裝用錯了,管腳順序畫反了等等,有些可以通過飛線來解決,有些可能就讓一塊板子直接變成了廢品。畫封裝的時候多檢查一遍,投板之前把封裝打印出來和實際器件比一下,多看一眼,多檢查一遍不是強迫癥,只是讓這些容易犯的低級錯誤盡量避免。否則設(shè)計的再好看的板子,上面布滿飛線,也就遠談不上優(yōu)秀了。(二) 學(xué)會設(shè)置規(guī)則其實現(xiàn)在不光高級的PCB設(shè)計軟件需要設(shè)置布線規(guī)則,一些簡單易用的PCB工具同樣可以進行規(guī)則設(shè)置。人腦畢竟不是機器,那就難免會有疏忽有失誤。所以把一些容易忽略的問題設(shè)置到規(guī)則里面,讓電腦幫助我們檢查,盡量避免犯一些低級錯誤。另外,完善的規(guī)則設(shè)置能更好的規(guī)范后面的工作。所謂磨刀不誤砍柴工,板子的規(guī)模越復(fù)雜規(guī)則設(shè)置的重要性越突出。現(xiàn)在很多EDA工具都有自動布線功能,如果規(guī)則設(shè)置足夠詳細,讓工具自己幫你去設(shè)計,你在一旁喝杯咖啡,不是更愜意的事情嗎?(三) 為別人考慮的越多,自己的工作越少在進行PCB設(shè)計的時候,盡量多考慮一些最終使用者的需求。比如,如果設(shè)計的是一塊開發(fā)板,那么在進行PCB設(shè)計的時候就要考慮放置更多的絲印信息,這樣在使用的時候會更方便,不用來回的查找原理圖或者找設(shè)計人員支持了。如果設(shè)計的是一個量產(chǎn)產(chǎn)品,那么就要更多的考慮到生產(chǎn)線上會遇到的問題,同類型的器件盡量方向一致,器件間距是否合適,板子的工藝邊寬度等等。這些問題考慮的越早,越不會影響后面的設(shè)計,也可以減少后面支持的工作量和改板的次數(shù)??瓷先ラ_始設(shè)計上用的時間增加了,實際上是減少了自己后續(xù)的工作量。在板子空間信號允許的情況下,盡量放置更多的測試點,提高板子的可測性,這樣在后續(xù)調(diào)試階段同樣能節(jié)省更多的時間,給發(fā)現(xiàn)問題提供更多的思路。
在PCB板的設(shè)計當(dāng)中,可以通過分層、恰當(dāng)?shù)牟季植季€和安裝實現(xiàn)PCB的抗ESD設(shè)計。在設(shè)計過程中,通過預(yù)測可以將絕大多數(shù)設(shè)計修改僅限于增減元器件。通過調(diào)整PCB布局布線,能夠很好地防范ESD。以下是一些常見的防范措施。1、盡可能使用多層PCB相對于雙面PCB而言,地平面和電源平面,以及排列緊密的信號線-地線間距能夠減小共模阻抗和感性耦合,使之達到雙面PCB的1/10到1/100。盡量地將每一個信號層都緊靠一個電源層或地線層。對于頂層和底層表面都有元器件、具有很短連接線以及許多填充地的高密度PCB,可以考慮使用內(nèi)層線。2、對于雙面PCB來說,要采用緊密交織的電源和地柵格。電源線緊靠地線,在垂直和水平線或填充區(qū)之間,要盡可能多地連接。一面的柵格尺寸小于等于60mm,如果可能,柵格尺寸應(yīng)小于13mm。3、確保每一個電路盡可能緊湊。4、盡可能將所有連接器都放在一邊。5、在每一層的機箱地和電路地之間,要設(shè)置相同的“隔離區(qū)”;如果可能,保持間隔距離為0.64mm。6、PCB裝配時,不要在頂層或者底層的焊盤上涂覆任何焊料。使用具有內(nèi)嵌墊圈的螺釘來實現(xiàn)PCB與金屬機箱/屏蔽層或接地面上支架的緊密接觸。